Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 16(8): e0010643, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35960772

RESUMO

BACKGROUND: Snakebite envenomation exerts a heavy toll in sub-Saharan Africa. The design and production of effective polyspecific antivenoms for this region demand a better understanding of the immunological characteristics of the different venoms from the most medically important snakes, to select the most appropriate venom combinations for generating antivenoms of wide neutralizing scope. Bitis spp. and Echis spp. represent the most important viperid snake genera in Africa. METHODOLOGY/PRINCIPAL FINDINGS: Eight rabbit-derived monospecific antisera were raised against the venoms of four species of Bitis spp. and four species of Echis spp. The effects of immunization in the rabbits were assessed, as well as the development of antibody titers, as judged by immunochemical assays and neutralization of lethal, hemorrhagic, and in vitro coagulant effects. At the end of immunizations, local and pulmonary hemorrhage, together with slight increments in the plasma activity of creatine kinase (CK), were observed owing to the action of hemorrhagic and myotoxic venom components. Immunologic analyses revealed a considerable extent of cross-reactivity of monospecific antisera against heterologous venoms within each genus, although some antisera provided a more extensive cross-reactivity than others. The venoms that generated antisera with the broadest coverage were those of Bitis gabonica and B. rhinoceros within Bitis spp. and Echis leucogaster within Echis spp. CONCLUSIONS/SIGNIFICANCE: The methodology followed in this study provides a rational basis for the selection of the best combination of venoms for generating antivenoms of high cross-reactivity against viperid venoms in sub-Saharan Africa. Results suggest that the venoms of B. gabonica, B. rhinoceros, and E. leucogaster generate antisera with the broadest cross-reactivity within their genera. These experimental results in rabbits need to be translated to large animals used in antivenom production to assess whether these predictions are reproduced in horses or sheep.


Assuntos
Viperidae , África Subsaariana , Animais , Antivenenos , Hemorragia , Cavalos , Soros Imunes , Coelhos , Ovinos , Venenos de Serpentes , Serpentes
2.
Toxicon X ; 13: 100097, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35243330

RESUMO

Coralsnakes belong to the family Elapidae and possess venoms which are lethal to humans and can be grouped based on the predominance of either three finger toxins (3FTxs) or phospholipases A2 (PLA2s). A proteomic and toxicological analysis of the venom of the coralsnake Micrurus yatesi was performed. This species, distributed in southeastern Costa Rica, was formerly considered a subspecies of M. alleni. Results showed that this venom is PLA2-rich, in contrast with the previously studied venom of Micrurus alleni. Toxicological evaluation of the venom, in accordance with proteomic data, revealed that it has a markedly higher in vitro PLA2 activity upon a synthetic substrate than M. alleni. The evaluation of in vivo myotoxicity in CD-1 mice using histological evaluation and plasma creatine kinase release also showed that M. yatesi venom caused muscle damage. A commercial equine antivenom prepared using the venom of Micrurus nigrocinctus displayed a similar recognition of the venoms of M. yatesi and M. nigrocinctus by enzyme immunoassay. This antivenom also immunorecognized the main fractions of the venom of M. yatesi and was able to neutralize its lethal effect in a murine model.

3.
Toxicon ; 197: 48-54, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33862027

RESUMO

Phospholipases A2 (PLA2s) and PLA2-like proteins are significant components of snake venoms. Some of these proteins act as potent toxins causing muscle necrosis, which may lead to amputation in severe envenomings. Fundamental aspects of the mechanism of action of these toxins are still not completely known. Myotoxin-I is a catalytically active Asp49 PLA2 from the venom of Bothrops asper, a medically relevant pit viper from Central America. Myotoxin-II is a catalytically inactive Lys49 PLA2-homolog also present in the venom of this snake. For the first time, the in vivo cellular localization of these myotoxins was studied in mouse skeletal muscle using immunofluorescence. Results showed that after 5 min of injection in the gastrocnemius muscle, both toxins initially interacted with the sarcolemma, and some colocalization with nuclei was already evident, especially for Mt-II. After 3 h of injection, a significant colocalization with the nuclei was observed for both toxins. These in vivo results confirm the importance of the initial interaction of these toxins with the sarcolemma and furthermore highlight the internalization and interaction of the toxins with nuclei during their pathophysiological activities, as observed in recent studies using cell culture.


Assuntos
Bothrops , Venenos de Crotalídeos , Animais , América Central , Venenos de Crotalídeos/toxicidade , Modelos Animais de Doenças , Fosfolipases A2 do Grupo II , Camundongos , Proteínas de Répteis/toxicidade
4.
Front Med Technol ; 3: 772275, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047966

RESUMO

Despite vaccines are the main strategy to control the ongoing global COVID-19 pandemic, their effectiveness could not be enough for individuals with immunosuppression. In these cases, as well as in patients with moderate/severe COVID-19, passive immunization with anti-SARS-CoV-2 immunoglobulins could be a therapeutic alternative. We used caprylic acid precipitation to prepare a pilot-scale batch of anti-SARS-CoV-2 intravenous immunoglobulins (IVIg) from plasma of donors immunized with the BNT162b2 (Pfizer-BioNTech) anti-COVID-19 vaccine (VP-IVIg) and compared their in vitro efficacy and safety with those of a similar formulation produced from plasma of COVID-19 convalescent donors (CP-IVIg). Both formulations showed immunological, physicochemical, biochemical, and microbiological characteristics that meet the specifications of IVIg formulations. Moreover, the concentration of anti-RBD and ACE2-RBD neutralizing antibodies was higher in VP-IVIg than in CP-IVIg. In concordance, plaque reduction neutralization tests showed inhibitory concentrations of 0.03-0.09 g/L in VP-IVIg and of 0.06-0.13 in CP-IVIg. Thus, VP-IVIg has in vitro efficacy and safety profiles that justify their evaluation as therapeutic alternative for clinical cases of COVID-19. Precipitation with caprylic acid could be a simple, feasible, and affordable alternative to produce formulations of anti-SARS-CoV-2 IVIg to be used therapeutically or prophylactically to confront the COVID-19 pandemic in middle and low-income countries.

5.
Toxicon ; 168: 113-121, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31326508

RESUMO

Bothrops diporus, previously considered a subspecies of the B. neuwiedi complex, is a medically relevant viperid in Northeastern Argentina. The venom of this species causes local tissue damage characterized by myonecrosis, hemorrhage, blistering, and edema. In the present study, two basic phospholipases A2 (PLA2-I and PLA2-II) were isolated from this venom, and their pathological effects upon murine skeletal muscle and myogenic cells in culture were analyzed. Partial amino acid sequencing showed that PLA2-I and PLA2-II are Asp49 and Lys49 PLA2s, respectively. In agreement with this, PLA2-I showed PLA2 activity, whereas PLA2-II did not. Functional assays revealed differences in their myotoxicity, cytotoxicity, and anti-adhesion activity, and in the ability to inhibit cell migration, all of which were greater for the Lys49 variant. Native electrophoresis showed that PLA2-I was less basic than PLA2-II. The two proteins act synergistically to affect the integrity of C2C12 myogenic cells, providing a further example of the concerted action of coexisting snake venom components. PLA2-I and PLA2-II, together with additional basic PLA2s revealed by RP-HPLC, probably play an important role in myonecrosis after envenomation by B. diporus.


Assuntos
Bothrops , Venenos de Crotalídeos/enzimologia , Venenos de Crotalídeos/toxicidade , Fosfolipases A2/química , Fosfolipases A2/toxicidade , Sequência de Aminoácidos , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Feminino , Masculino , Camundongos , Músculo Esquelético/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...